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On the identification of creep processes at 
low stresses 
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A number of experimental observations, supported by some theoretical considerations, 
have suggested the existence of a threshold stress for deformation, which signifies that an 
effective stress, rather than the applied stress, is responsible for the observed creep rate. 
In addition, recent experimental evidence shows that under some conditions of defor- 
mation the threshold stress varies strongly with temperature. The effect of the temperature 
dependence of the threshold stress on the measured values of the activation energy and 
the stress exponent is examined and it is shown that this temperature dependence may 
complicate various creep plots. Also, consideration of the nature of the interaction 
between different creep processes suggests that under certain experimental conditions it 
may be difficult to distinguish the difference between the operation of two sequential 
mechanisms and the operation of a threshold stress process. 

1. Introduction 
For simple materials, deformed at temperatures 
above about 0.5 Tin, where Tm is the melting point 
of the material, the steady-state creep rate, 6, may, 
under a given set of experimental conditions, be 
represented by an equation of the form: 

t 
where B is a constant, o is the applied stress, n is 
the stress exponent, d is the grain size, rn is the 
grain size sensitivity, Qa is the apparent activation 
energy, R is the gas constant, and T is the absolute 
temperature. In addition, recent analyses [1,2] of 
experimental data for a wide range of materials 
(metals and alloys) have shown that B is not 
strictly independent of  temperature and that it is 
preferable to represent the creep rate of a diffusion- 
controlled process by a dimensionless relationship 
of the form 

= A ff ~ (2) 

with 

D =  Do exp I - - ~ ) ,  (3) 

where A is a dimensionless constant, b is the 
Burgers vector, D is the diffusion coefficient, Do is 
a frequency factor, QD is the activation energy of 
the diffusion process that characterizes the 
creep behaviour, G is the shear modulus and k is 
Boltzmann's constant. 

Rate controlling mechanisms of creep are gener- 
ally identified by comparing the values of Q, 
m, and n, which are evaluated during creep 
experiments, with those values established for 
various basic processes. For example, according to 
Equation 1, a plot of  the creep rate, e, against the 
applied stress, o, on a logarithmic scale for constant 
temperature and grain size yields a straight line with 
a slope representing the stress exponent, n. The 
value of n can then be used to indicate whether a 
Newtonian process (n = 1) or a non-Newtonian 
process* ( n >  1) governs the creep behaviour. 
However, this simple analysis may be complicated 
by the presence of a threshold stress for defor- 
mation, Oo, which signifies that an effective stress, 
Oe( = o -  ao), rather than the applied stress, is 
responsible for the observed creep rate. An exam- 

*Some dislocations models, when modified [3 ], predict n = 1, however, these mechanisms are open to several critisms. 
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ple of such a complication was demonstrated re- 
cently [4] by considering low-stress creep data of 
large-grained aluminium. When those data were 
plotted as e against a on a logarithmic scale, the 
plot produced a straight line with a slope of 2, 
suggesting the presence of a deformation process 
having n = 2. However, when the data were re- 
plotted in terms of the effective stress, %, since a 
threshold stress was measured, a modified New- 
tonian process (~ = ae) was correctly identified. 

Not only may the failure to measure and in- 
corporate the threshold stress into the creep ana- 
lysis lead to erroneous constant values of  the 
stress exponent, but it may also incorrectly imply 
the presence of two mechanisms operating sequen- 
tially. When two sequential creep processes contri- 
bute to the observed creep behaviour, a logarithmic 
plot of e against a over a narrow range of stresses 
shows a continuous increase in the value of the 
stress exponent as the applied stress decreases [5]. 
A similar increase is obtained if a threshold stress 
process exists [4]. In this paper, the difficulty in 
determining whether the creep behaviour at very 
low stresses arises from the operation of two 
sequential processes or from the operation of a 
threshold stress process is explored further using 
the concept of the activation energy for creep. 

2. Analysis and discussion 
The true activation energy, QD, is an important 
parameter in the deformation equation and must 
be determined in any attempt to identify the 
rate-controlling mechanism. According to Equation 
2, QD is defined as 

QD = - - R [ o - ~ l a ,  o, (4) 

whereas the apparent activation energy, Qa, is 
given by 

[Olne] 
G = - R  (s) 

The apparent activation energy, Qa, is related to 
the true activation energy, Qd, by the following 
expression [2]: 

Despite the frequent use of Equation 6 in correcting 

activation energies measured during creep, it 
appears that under most conditions, especially 
when n < 5, that QD ~- Qa to within the accuracy 
of the experimental data. Accordingly, the correc- 
tion term given by Equation 6 will be ignored and 
Equation l, rather than Equation 2, will be used in 
the present analysis. 

Under conditions of constant stress and grain 
size and under the operation of a single defor- 
mation process which can be represented by Equa- 
tion 1, a plot of log ~ against T -1 (Arrhenius plot) 
has a constant slope (= -Q/2.3 R) which yields the 
value of the activation energy. More often, how- 
ever, interaction between different creep processes 
may be significant over wide ranges of experi- 
mental conditions and as a result the Arrhenius 
plots of e against T -1 may become complicated. 
Several forms of complications were recently 
discussed in detail [5 -7 ] ,  but there appears to be 
no evaluation of situations in which some of these 
complications may lead to ambiguities in the inter- 
pretation of the creep behaviour at low stresses. 
The situations for sequential processes and a 
threshold stress process are now considered for 
such an evaluation. 

2. I. Sequent ia l  processes 
When the operation of one deformation process is 
a prerequisite for the operation of the others, the 
deformation processes operate sequentially. For 
the situation where each process participates for a 
different time through any time period, t, and con- 
tributes an identical strain in order to keep the 
integrity of the material, the total creep rate is 
given by, 

1 1 Z ---. (7) 
~i i s 

For two mechanisms operating sequentially, 
Equation 7 reduces to: 

e + ,% (8) 

It is clear that a plot of log it  against T -1 over a 
limited range of temperature would show a tran- 
sition between the two modes of deformation. 

For the purpose of illustration, and also com- 
parison later with the behaviour of a threshold 
stress process, we shall consider two sequential 
processes, Type A and Type B, which proceed 
simultaneously with rates given by the equations: 
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eA = A ~ exp ( - Q A / R T )  (9) 

and 

ell = B o n e x p ( - Q B / R T ) .  (10) 

The values of A, QA, B, n, and QB have been 
chosen as 10 -1, 83kJmo1-1 , 5 x 10 6, 4, and 
209kJmo1-1, respectively. For three different 
stress levels ol ,  (12, and (13 ((is > 02 > (11), Fig. lb 
shows the relationship between logarithm of it  
and T -1 using Equation 8 along with Equations 9 
and I0. In Fig. lb the solid curve ABCD rep- 
resents, the total creep rate*, and the broken 
lines represent the extrapolations of the two 
straight lines AB and CD arising from Processes A 
and B, respectively; the activation energies QA and 
QB are obtained from the slopes of these two lines, 
as indicated in Fig. 1. An examination of the 
plot shows that the activation energy changes from 
low (QA) to high (QB) value with decreasing tem- 
perature for constant (1, a characteristic which can 
be used to distinguish between sequential and 
independent summation; for independent sum- 
mation @t = ~;ei) the reverse is true. 

2.2. A threshold  stress process 
A number of experimental findings, supported by 
some theoretical analyses, have suggested several 
sources which may account for the presence of a 
threshold stress, ao, during the Newtonian creep 

behaviour at low stresses (e = 0 when a = ao). 
These include: surface tension [8], oxidation 
effects [9,10], presence of particles at grain bound- 
aries [ 11,12], and inefficiency of grain boundaries 
as vacancy sources and sinks [13]. Also, two recent 
theories of superplasticity [14,15] introduce a 
threshold stress into the constitutive equation of 
deformation to explain the experimentally- 
observed sigmoidal relationship between o and e at 
very low stresses. In the theory of Ashby and 
Verrall [14], the a0 term arises due to the work 
required to balance increases in grain-boundary 
area during the grain-switching event, whereas the 
theory of Gittus [15] attributes ao to the inter- 
action of interphase boundary superdislocations 
and grain-boundary ledges. 

Theoretical analyses of the threshold stress pro- 
cesses associated with grain boundaries (presence 
of particles, inefficiency of grain boundaries, in- 
crease in grain-boundary area, e t c . . . )  predict a 
very weak temperature dependence, but recent 
experimental evidence, as reviewed by Burton 
[16], suggests that the threshold stress, at least 
during the Newtonian creep behaviour, varies 
strongly with temperature according to the fol- 
lowing equation: 

a o = C  exp(QR--f), (11) 
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Figure 1 Arrhenius plots [log 
against T -1 (K -1 )] at three con- 
stant stresses (a) for a threshold 
stress process and (b) for two 
sequential processes. 

*This plot is experimentally obtained either by subjecting a specimen to a number of rapid changes in temperature, of 
the order of 10K, while under a constant stress, or by using the logarithmic plots of ~ against a for several different 
temperatures. 
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where C is a constant which depends on the grain 
size and shear modulus and Q0 is an activation 
energy associated with %.  This strong temperature 
dependence of ao would certainly complicate the 
Arrhenius plot of log e against T -1, and it is 
interesting to examine whether this form of com- 
plication, under certain experimental conditions*, 
is similar to that produced by the sequential sum- 
mation of two deformation processes. 

Let us consider a hypothetical situation in which 
a modified Newtonian creep process, associated 
with a threshold stress process, controls the 
creep behaviour and obeys the following empirical 
law: 

with 
/ k 

ao = Co exp Qt~-~). (13) 

The values of Ct, QA, Co and Q0 have been selec- 
ted as 10 -1 , 83kJmo1-1, 10 -2 , and 33kJmo1-1, 
respectively, so that creep rates ascribable to the 
sequential summation of Equations 9 and 10, 
when plotted in Fig. 2 against the applied stress on 
a logarithmic scale, fall very close to those due to 
Equation 12 over the same experimental stress 
range; in Fig. 2, e = 5 x 10 -10 and a = 15 (arbitrary 
units) are assumed to be the slowest detectable 
creep rate and the smallest applied stress, respect- 
ively. I f  it is taken that a creep rate can only be 
measured to within a limit of-+25%, this choice of 
QA, Qo, Ct, and Co shows that the two sets of 
points (circles and triangles) are experimentally 
indistinguishable for four different temperatures. 

In Fig. 2a, the logarithm of creep rate arising 
from the modified creep process, given by Equa- 
tion 12, is plotted against T -1 for three different 
stress levels a l ,  a~ and % (% > a2 > al),  which 
are comparable to those used in plotting Fig. lb. 
The plot reveals three important points. First, for 
high strain rates (high stresses), the activation 
energy for creep is equal to QA and ao has no 
significant effect on its value. Second, for a 
constant value of a, as the creep rate decreases 
with an increase in T -1 , the slope of the Arrhenius 
plot increases, suggesting an increase of Q with 
decreasing temperature; straightforward treatment 
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Figure  2 Log (strain rate) against log (applied stress) at 
four cons tant  temperatures  for a threshold stress process 
and for two sequential  processes. 

shows that the apparent activation energy, Q, 
determined from the plot, is related to QA and 
Qo by the following expression: 

/(;o ) Q = QA + Qo - 1  

(e >~ Oo, Q ~- QA; and a = ao, Q -+ oo). (14) 

Third, if measurements of the activation energy 
were only feasible over a narrow range of tem- 
perature and if e = 5 x 10 -l~ (arbitrary units) 
represents the slowest detectable creep rate, the 
computed Curve I, for example, would, in view of 
normal experimental scatter, be indistinguishable 
from the fit using two straight lines, AB and CD, 
and a transition knee, BC. This fit, despite its 
invafidity for e < 5  x 10 -a~ yields a plot that 
stimulates the sequential situation of Fig. lb, as 
discussed earlier. 

While a hypothetical modified Newtonian 
process, which incorporates a threshold stress, is 
used to illustrate the present argument, the same 
trend shown in Figs 1 and 2 would also be obtained 

*These exper imenta l  condit ions may  include: a lower limit for the  external  load which can be applied to a specimen 
due to the  significance o f  friction at low stresses, a narrow range of  tempera ture  which is dictated by the  stability of  the  
material  being tested,  or lack o f  very accurate measuring devices to moni to r  extremely low creep rates. 
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Figure 3 Log (strain rate) against log (applied 
stress) (a) for a power4aw threshold stress 
process and (b) for independent ly  summed  
Newtonian  and power-law threshold stress 
processes. 

if a modified power-law process, e =A(o--Oo)", 
was assumed to be operative. This situation is not 
unrealistic since experimental measurements made 
during superplastic flow of a duplex stainless steel 
[17] have revealed the presence of a threshold 
stress that decreased with in_creasing temperature. 
Fig. 3a represents a logarithmic plot of e against o 
for the following power-law process: 

with 

[--QAI~ 
= c .  

[Qol~ 
oo, -- expt j 

(15) 

(16) 

The values of  Cti, QAa, Col, and Qm have been 
selected as 9.4x 10 -3 , 84kJmo1-1, 10 -2 , and 
33kJmo1-1, respectively. It is apparent, from 
Fig. 3a, that if sufficient experimental precision 
was available at very low creep rates, the data 
of the modified power-law process, unlike those 
of the sequential summation, would exhibit a 
rapid and continuous increase in the stress ex- 
ponent with decreasing a at constant tempera- 
ture; Point 2 is marked by a downward arrow 
since it is out of scale. However, this trend may 
be masked, and the identification process may 
become difficult, if an independent mechanism 
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of deformation intervenes at very low stresses. 
This point is illustrated in Section 2.3. 

2.3 The e f fec t  o f  an i ndependen t  
low-stress process 

Let us assume that creep rates arise from the 
independent summation ( i t  = ei + e2) of Equa- 
tion 15 and the following rate equation: 

= Ca o--Co2 exp expl~-~-- ] . 

(17) 

The values of Ca,  Co2, Qo2, and QA2 have been cho- 
sen as 8 .7x10  -3, 3 .5x10  -3, 25kJmo1-1, and 
84kJmo1-1, respectively. In Fig. 3, the inde- 
pendent summation is represented by circles, 
whereas the contributions from Equations 15 
and 17 are shown by squares and triangles, 
respectively. Three observations are noted in 
Fig. 3b. First, the creep rates at high stresses are 
approximately given by Equation 15, since the 
contribution from the low-stress process is 
negligible. Second, the two lowest points 
(Points 1 and 2), ascribable to the operation of 
the threshold stress process, are displaced to 
Points 1' and 2', owing to the significant con- 
tribution of Equation 17. Third, the trend with 
the new positions of  Points 1 and 2 can now be 
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Figure 4 Arrhenius plots [(log ~ against 
T -1 (K -1)] at constant stress (a) for a power- 
law threshold stress process and (b) for 
independently summed Newtonian and 
power-law threshold stress processes. 

approximated by two straight lines, having 
slopes of  2 and 5, connected by a transition 
curve. This approximation incorrectly implies 
the operation of  two sequential processes. More- 
over, the situation becomes even more mis- 
leading if a limiting creep rate, represented by a 
horizontal line (labelled L) in Fig. 3, exists, or 
if, for some reason, investigation of  the creep 
behaviour of the material is not pursued at lower 
stresses. 

The operation o f  a second, independent mech- 
anism at low stresses would also cause an error in 
the interpretation o f  the results of  activation energy 
measurements, as demonstrated in Fig. 4. Fig. 4a 
represents log e against T -1 for the threshold 
stress process given by Equation 15 and shows that 
the data exhibit a rapid and continuous increase in 
the value of  the activation energy with decreasing 
temperature at constant stress. In Fig. 4b the inde- 
pendent summation of  the threshold stress process 
and the mechanism represented by Equation 17 is 
shown, and it is evident that the significant contri- 
bution of  this independent mechanism at low 
stresses causes the displacement of  the two points, 
Points 1 and 2, to higher creep rates, Points 1' and 
2'. Again, a straight-line fit, which is possible due 

to the new positions o f  Points 1 and 2, would 
erroneously lead to a situation almost identical to 
that produced by the sequential summation (two 
straight lines connected by a transition knee). 

It is clear from the above discussion that under 
certain experimental conditions the similarity be- 
tween the behaviour of  two sequential processes 
and that of  a threshold stress process, which is 
sensitive to temperature, is so strong that creep 
characteristics other than the activation energy 
and the stress exponent must be sought if the 
creep behaviour o f  the material is to be identified. 
Among these characteristics, substructural analyses 
should be invaluable in providing guiding infor- 
mation. 

3. Conclusion 
It is demonstrated that under certain experimental 
conditions the values of  the activation energy 
inferred from the Arrhenius plots of  log e against 
T -1 do not provide a sufficiently good criterion to 
distinguish between the operation of  two sequen- 
tial processes and the operation of  a threshold 
stress process that depends strongly on temperature. 
Also, the identification of  such a threshold stress 
process becomes even more difficult if the creep 
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behaviour  o f  the  material  includes con t r ibu t ions  

f rom o the r  i n d e p e n d e n t  mechanisms.  
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